EVALUATION OF FINANCIAL PERFORMANCE AND EFFICIENCY OF COMPANIES IN SERBIA

DOI: 10.5937/JEMC2202132L

UDC: 005:336(497.11) Original Scientific Paper

Radojko LUKIC¹

¹University of Belgrade, Faculty of Economics, 11000 Belgrade, Kamenička 6, Republic of Serbia E-mail: <u>radojko.lukic@ekof.bg.ac.rs</u>

Paper received: 21.10.2022.; Paper accepted: 21.11.2022.

Recently, various methods of multi-criteria decision-making, as well as DEA(Data Envelopment Analysis) models, have been used more and more worldwide to measure the financial performance and efficiency of companies. Based on that, this paper analyzes the efficiency of companies in Serbia using the ARAS method. According to the ARAS method, five most efficient companies in Serbia are JP POŠTA SRBIJE BELGRADE, JP EPS BELGRADE, JP SRBIJAGAS NOVI SAD, JP PUTEVI SRBIJE BELGRADE and COCA-COLA HBC - SERBIA DOO ZEMUN. First four are public companies, and the fifth is from the processing industry sector. Public enterprises are fundamentally efficient. Trading companies are well positioned. So, for example, the DELHAIZE SERBIA DOO BELGRADE retail chain is in the eleventh place. The efficiency factors of companies in Serbia are, in addition to macroeconomics, managerial skills in managing the company. They differ from company to company. Digitization of the company's entire operations plays a significant role in this.

Keywords: ARAS method; Financial performance; Efficiency; Factors; Companies; Serbia.

INTRODUCTION

The issue of analyzing the financial performance and efficiency of companies is very complex, significant, and continuously relevant. It is therefore continuously researched theoretically, methodologically, and practically. It provides a detailed insight into the factors of financial performance and efficiency and what measures should be taken to achieve the target liquidity, solvency, and profitability of the company. The analysis of the financial performance and efficiency of the company is based on traditional and modern methods. In this work, summative methods based on multi-criteria analysis are used.

Recently, due to the reality of the obtained results, it is more challenging to measure the efficiency of companies using different methods of multicriteria decision-making. Bearing that in mind, this paper analyzes the efficiency of companies in Serbia (i.e. their ranking) using the ARAS method as a subject of the research. The goal and purpose of this paper is to process the given problem as complexly as possible in order to improve the efficiency of companies in Serbia in the future by taking appropriate measures.

As it is known, recently there has been an increasingly rich body of literature devoted to the evaluation of the efficiency of companies based on various methods of multi-criteria decision-making (Berman et al., 2018; Ersoy, 2017, 2022; Gaur et al., 2020; Levy et al., 2019; Lovreta & Petković, 2021; Tsai et al., 2021; Saaty 2008;). In this context, the role and importance of the ARAS method is increasing. In the relevant Serbian literature, for the first time, as far as we know, the performance and efficiency of Serbian companies are measured and analyzed using the ARAS method, which represents a certain scientific and professional contribution (Lukic, 2011; Lukic et al., 2019, 2021, 2022; Lukic et al., 2020a, 2020b, 2021; Lukic, 2011, 2020a 2020b, 2021a, 2021b, 2021c, 2021d, 2021e, 2021f; Lukic & Kozarevic, 2021).

ISSN 2217-8147 (Online) ©2022 University of Novi Sad, Technical faculty "Mihajlo Pupin" in Zrenjanin, Republic of Serbia Available online at http://www.tfzr.uns.ac.rs/jemc The research of the treated problem in this work is based on the fundamental hypothesis of realistic analysis of the company's efficiency factors as a key assumption for improvement in the future by taking relevant measures. This can be easily achieved with the application (integrated or individually) of various multi-criteria decisionmaking methods, including the ARAS method, as well as DEA models (Bnaker et al., 1984; Lukic & Hadrovic-Zekic, 2019).

MATERIALS AND METHODS

The necessary empirical data for the research of the treated problem in this paper were collected from the Agency for Economic Registers of the Republic of Serbia. Companies submit annual financial reports (balance sheet, income statement, cash flow report) to the Agency for Economic Registers of the Republic of Serbia, which further processes data for various business purposes of a macro and micro nature. Empirical data used in this paper are "manufactured" in compliance with relevant international standards. In terms of international comparability, there are no restrictions, whatsoever.

The analysis of the financial performance and efficiency of the company can be done on the basis of classic methodology - ratio analysis and modern methods based on multi-criteria analysis. They are used separately or in combination and complement each other. In this way, a more complete picture of the financial situation and efficiency of the company is obtained, and what measures should be taken in order to improve it in the future.

The Additive Ratio Assessment System (ARAS) is a multi-criteria analysis technique. It was developed by Zavadskas and Turskis (2010). Unlike other multi-criteria decision-making methods, the alternatives are ranked based on the utility function value (Chatterjee & Chakraborty, 2013; Dahooie et al., 2019; Jovčić et al., 2020; Koc & Uysal, 2017; Rostamzadeh et al., 2017; Sliogene et al. 2013). The ARAS method procedure includes several steps (Zavadskas & Turskis, 2010):

Phase 1: Create a decision-making matrix (DMM)

The decision-making matrix is created as follows:

$$X = \begin{bmatrix} x_{01} & \cdots & x_{0j} & \cdots & x_{0n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & \cdots & x_{ij} & \cdots & x_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mj} & \cdots & x_{mn} \end{bmatrix}; i = \overline{0, m}; j = \overline{1, n}$$
(1)

where m – the number of alternatives, n – the number of criteria describing each alternative, x_{ij} – the value representing the performance value of the *i*-th alternative in terms of the *j*-th criterion, x_{01} – the optimal value of the *j*-th criterion.

If the optimal value of the *j*-th criterion is unknown, then

$$x_{0j} = \max_{i} x_{ij}, if \max_{i} x_{ij} is preferable;$$

$$x_{0j} = \min_{i} x_{ij}^{*}, if \min_{i} x_{ij}^{*} is preferable$$
(2)

Phase 2: Normalization of criteria values

In this stage, the initial values of the criteria are normalised - by defining the values \bar{x}_{ij} of the normalised decision-making matrix - \bar{X} .

$$\bar{X} = \begin{bmatrix} \bar{x}_{01} & \cdots & \bar{x}_{0j} & \cdots & \bar{x}_{0n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \bar{x}_{i1} & \cdots & \bar{x}_{ij} & \cdots & \bar{x}_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \bar{x}_{m1} & \cdots & \bar{x}_{mj} & \cdots & \bar{x}_{mn} \end{bmatrix}; i = \overline{0, m}; j = \overline{1, n} \quad (3)$$

Normalization in the case of the desired maximum value is performed as follows:

$$\bar{x}_{ij} = \frac{x_{ij}}{\sum_{i=0}^{m} x_{ij}} \tag{4}$$

If a minimum value is preferable, the procedure consists of two phases:

$$x_{ij} = \frac{1}{x_{ij}^*}; \ \bar{x}_{ij} = \frac{x_{ij}}{\sum_{i=0}^m x_{ij}}$$
(5)

Phase 3: Define the normalised-weighted matrix - \hat{X}

Weights are usually determined by the expert evaluation method. One should use only wellfounded weights because they are always subjective and affect the solution. The sum of weights is limited (i.e. equal to 1):

$$\sum_{j=1}^{n} w_j = 1 \tag{6}$$

$$\hat{X} = \begin{bmatrix} \hat{x}_{01} & \cdots & \hat{x}_{0j} & \cdots & \hat{x}_{0n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \hat{x}_{i1} & \cdots & \hat{x}_{ij} & \cdots & \hat{x}_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \hat{x}x_{m1} & \cdots & \hat{x}_{mj} & \cdots & \hat{x}_{mn} \end{bmatrix}; i = \overline{0, m}; j = \overline{1, n} \quad (7)$$

The normalized-weighted values of the criteria are calculated as follows:

$$\hat{x}_{ij} = \bar{x}_{ij} w_j; i = \overline{0, m} \tag{8}$$

where is it w_j is the weight (importance) of the *j*-th criterion and \bar{x}_{ij} j is the normalized rating of the *j*-th criterion.

Determining values of optimality function:

$$S_i = \sum_{j=1}^n \hat{x}_{ij}; \ i = \overline{0, m}$$
(9)

where is it S_i is the value of the optimality function of the *i*-th alternative. If S_i is the largest, the criterion is the best.

The utility degree (K_i) of an alternative a_i is calculated (using the previous equation) as follows:

$$K_i = \frac{S_i}{S_0}, \ i = \overline{0, m} \tag{10}$$

where S_i and S_0 are the optimality criterion values.

The value of K_i is in the interval [0, 1]. The relative efficiency (position, rank) of an alternative is determined according to the utility function values. The best alternative is the one with the greatest value.

In this paper, the weights of the criteria were determined using the AHP (Analytical Hierarchical Process) method. We will briefly point out its theoretical and methodological characteristics. The AHP method proceeds through several stages (Saaty, 2008):

Phase 1: Construct a pairwise comparison matrix

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} 1 & a_{12} & \cdots & a_{1n} \\ 1/a_{12} & 1 & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 1/a_{1n} & 1/a_{2n} & \cdots & 1 \end{bmatrix}$$
(11)

Phase 2: Normalise the pairwise comparison matrix

$$a_{ij}^* = \frac{a_{ij}}{\sum_{i=1}^n a_{ij}}, i, j = 1, \dots, n$$
 (12)

Phase 3: Determination of relative importance, that is weight vector

$$w_i = \frac{\sum_{i=1}^n a_{ij}^*}{n}, i, j = 1, \dots, n$$
(13)

A consistent index – CI is of particular importance. He is a measure of the deviation of *n* from λ_{max} . It can be represented by the following equation:

$$CI = \frac{\lambda_{max} - n}{n} \tag{14}$$

The meaning is as follows: If CI < 0.1, the estimated values of the coefficients a_{ij} are consistent, and the deviation of λ_{max} from *n* is negligible. In other words, this means that the AHP method accepts an inconsistency of less than 10%. The consistency index is used to calculate the consistency ratio CR = CI/RI, where RI is a random index.

RESULTS AND DISCUSSION

The selected criteria are financial indicators: C1 -Net profit, C2 - Business income, C3 - Business assets, C4 - Capital, and C5 - Number of employees. They are also key factors in the performance and efficiency of companies. With their adequate control, the company's target profit can be realized. Alternatives were observed (24) among largest companies in Serbia according to realized net profit in 2020. The initial data for measuring the efficiency of companies in Serbia are shown in Table 1. for 2020 using the AHP-ARAS method (Lukic, 2022). (The calculation was performed using the ARAS Software-Excel software.)

The weight coefficients of the selected criteria were determined using the AHP method (AHP With Arithmetic Mean Method). They are shown in Table 2. (The calculation was performed by using the AHP Software-Excel software.)

The empirical results of measuring the efficiency of companies in Serbia based on the ARAS method are shown in Tables 3-6 and Figure 1.

		1401					
		Net profit	Business	Business	Capital	Number of	
	Companies		income	assets	Г С4	employees	
A 1	TIC AD TIDES DOO DIDOT	0.212	04 545	50.008	12 501	2 580	
AI A2	COCA-COLA HBC -	5,668	26,649	49,349	41,272	962	
A3	PHILIP MORRIS	4,861	23,786	27,506	16.201	595	
A 4	OPERATIONS AD NIS	4 442	40.140	52.052	20.216	2.970	
A4	EARMINA PET EOODS	4,445	40,140	52,055	59,510	2,870	
A5	DOO INĐIJA	3,479	10,441	8,995	7,318	232	
A6	DELHAIZE SERBIA DOO BELGRADE	3,931	111,485	72.196	42.305	12,889	
A7	INVEJ AD BELGRADE- ZEMUN	3.402	125	6,867	120	54	
A8	JT INTERNATIONAL AD SENTA	2,852	19,494	17.173	7,226	280	
A9	KOEFIK DOO BELGRADE	2.174	157	3,423	2,991	16	
A10	JP ROADS OF SERBIA BELGRADE	5.148	52.112	528.297	361.421	2,074	
A11	IDC DOO BELGRADE	4.171	73,489	66,266	4.182	779	
A12	DOO RZD INTERNATIONAL BRANCH BELGRADE	1.943	15,909	15.281	8,243	93	
A13	DM INVEST DOO SMEDEREVSKA PALANKA	1,378	3,330	5,269	3.333	152	
A14	INKOP DOO ĆUPRIJA	1.081	3.155	6,210	2,884	102	
A15	TELENOR DOO BELGRADE	8.405	46,049	29,723	21,663	1.223	
A16	TELEKOM SRBIJA AD BELGRADE	5,509	88.161	334.606	148.603	6,805	
A17	VIP MOBILE DOO BELGRADE	3,606	33,599	49,532	0.000	1,350	
A18	SBB DOO BELGRADE	3.282	27,857	65,021	24.134	1,655	
A19	CETIN DOO BELGRADE	1.985	5,670	15,491	12,289	279	
A20	JP EPS BELGRADE	12,883	282,731	913.683	609,792	24,478	
A21	JKP BELGRADE ELEKTRANA BELGRADE	3.127	28,481	55,674	42.171	2010	
A22	JP SRBIJAGAS NOVI SAD	2,990	87,228	204.195	121.019	934	
A23	JUGOIMPORT-SDPR JP BELGRADE	1.286	14.162	56,310	21.129	363	
A24	JP POST OF SERBIA BELGRADE	987	24,552	29,695	23,662	14,865	
			Statistics			•	
	Mean	45.1590	58.1260	110.9922	70.5690	204.7833	
	Median	3.5425	31.0400	49.4405	21.3960	39.2390	
	Std. Deviation	200.62977	63.69459	209.10842	138.90019	305.06081	
	Skewness	4,898	2.178	3.063	3.163	1.632	
	Std. Error of Skewness	.472	.472	.472	.472	.472	
	Kurtosis	23,990	5,888	9,828	10,514	1.541	
	Std. Error of Kurtosis	.918	.918	.918	.918	.918	
	The minimum	1.08	3.16	3.42	.00	1.22	
1	Maximum	987.00	282.73	913.68	609.79	962.00	

Note: Amounts in millions of dinars. Employees as an integer. Statistics were calculated by using SPSS software *Source:* Agency for Economic Registers of the Republic of Serbia

Initial Comparisons Ma	ıtrix	C1	C2	C3	C4	C5
C1		1	2.5	4	2	2
C2		0.4	1	6	1.25	1
C3		0.25	0.166667	1	0.5	1
C4		0.5	0.8	2	1	1
C5		0.5	1	1	1	1
SUM		2.65	5.46667	14	5.75	6
Norme alige d Mataire						Waishts of
Normalizea Mairix	C1	C2	C3	C4	C5	Criteria
C1	0.3774	0.4573	0.2857	0.3478	0.3333	0.3603
C2	0.1509	0.1829	0.4286	0.2174	0.1667	0.2293
C3	0.0943	0.0305	0.0714	0.0870	0.1667	0.0900
C4	0.1887	0.1463	0.1429	0.1739	0.1667	0.1637
C5	0.1887	0.1829	0.0714	0.1739	0.1667	0.1567
					SUM	1
Consistency Ratio	0.0676	COMPAR WITH 0.1; IT SHOULD BE LESS THAN 0.1;	E;			

Table 3:Initial Matrix

Weights of criteria	0.3603	0.2293	0.09	0.1637	0.1567
Kind of criteria	1	1	1	1	1
	C1	C2	C3	C4	C5
A1	9,213	94,545	50,998	12.501	3.58
A2	5,668	26,649	49,349	41,272	962
A3	4,861	23,786	27,506	16.201	595
A4	4,443	40.14	52,053	39,316	2.87
A5	3,479	10,441	8,995	7,318	232
A6	3,931	111,485	72.196	42.305	12,889
A7	3.402	125	6,867	120	54
A8	2,852	19,494	17.173	7,226	280
A9	2.174	157	3,423	2,991	16
A10	5.148	52.112	528.297	361.421	2,074
A11	4.171	73,489	66,266	4.182	779
A12	1.943	15,909	15.281	8,243	93
A13	1,378	3.33	5,269	3.333	152
A14	1.081	3.155	6.21	2,884	102
A15	8.405	46,049	29,723	21,663	1.223
A16	5,509	88.161	334.606	148.603	6,805
A17	3,606	33,599	49,532	0	1.35
A18	3.282	27,857	65,021	24.134	1,655
A19	1.985	5.67	15,491	12,289	279
A20	12,883	282,731	913.683	609,792	24,478
A21	3.127	28,481	55,674	42.171	2.01
A22	2.99	87,228	204.195	121.019	934
A23	1.286	14.162	56.31	21.129	363
A24	987	24,552	29,695	23,662	14,865
MAX	987	282,731	913.683	609,792	962
MIN	1.081	3.155	3,423	0	1.223
0-Optimal Value	987	282,731	913.683	609,792	962

	10000				
Weights of criteria	0.3603	0.2293	0.09	0.1637	0.1567
Kind of criteria	1	1	1	1	1
	C1	C2	C3	C4	C5
0-Optimal Value	0.4766	0.1685	0.2554	0.2647	0.1637
A1	0.0044	0.0564	0.0143	0.0054	0.0006
A2	0.0027	0.0159	0.0138	0.0179	0.1637
A3	0.0023	0.0142	0.0077	0.0070	0.1012
A4	0.0021	0.0239	0.0146	0.0171	0.0005
A5	0.0017	0.0062	0.0025	0.0032	0.0395
A6	0.0019	0.0664	0.0202	0.0184	0.0022
A7	0.0016	0.0745	0.0019	0.0521	0.0092
A8	0.0014	0.0116	0.0048	0.0031	0.0476
A9	0.0010	0.0936	0.0010	0.0013	0.0027
A10	0.0025	0.0311	0.1477	0.1569	0.0004
A11	0.0020	0.0438	0.0185	0.0018	0.1326
A12	0.0009	0.0095	0.0043	0.0036	0.0158
A13	0.0007	0.0020	0.0015	0.0014	0.0259
A14	0.0005	0.0019	0.0017	0.0013	0.0174
A15	0.0041	0.0274	0.0083	0.0094	0.0002
A16	0.0027	0.0525	0.0935	0.0645	0.0012
A17	0.0017	0.0200	0.0138	0.0000	0.0002
A18	0.0016	0.0166	0.0182	0.0105	0.0003
A19	0.0010	0.0034	0.0043	0.0053	0.0475
A20	0.0062	0.1685	0.2554	0.2647	0.0042
A21	0.0015	0.0170	0.0156	0.0183	0.0003
A22	0.0014	0.0520	0.0571	0.0525	0.1589
A23	0.0006	0.0084	0.0157	0.0092	0.0618
A24	0.4766	0.0146	0.0083	0.0103	0.0025

Tapie 4: Normalizea Mai

Table 5: Normalized Weighted Matrix

	C1	C2	C3	C4	C5
0-Optimal Value	0.1717	0.0386	0.0230	0.0433	0.0257
A1	0.0016	0.0129	0.0013	0.0009	0.0001
A2	0.0010	0.0036	0.0012	0.0029	0.0257
A3	0.0008	0.0033	0.0007	0.0012	0.0159
A4	0.0008	0.0055	0.0013	0.0028	0.0001
A5	0.0006	0.0014	0.0002	0.0005	0.0062
A6	0.0007	0.0152	0.0018	0.0030	0.0003
A7	0.0006	0.0171	0.0002	0.0085	0.0014
A8	0.0005	0.0027	0.0004	0.0005	0.0075
A9	0.0004	0.0215	0.0001	0.0002	0.0004
A10	0.0009	0.0071	0.0133	0.0257	0.0001
A11	0.0007	0.0100	0.0017	0.0003	0.0208
A12	0.0003	0.0022	0.0004	0.0006	0.0025
A13	0.0002	0.0005	0.0001	0.0002	0.0041
A14	0.0002	0.0004	0.0002	0.0002	0.0027
A15	0.0015	0.0063	0.0007	0.0015	0.0000
A16	0.0010	0.0120	0.0084	0.0106	0.0002
A17	0.0006	0.0046	0.0012	0.0000	0.0000
A18	0.0006	0.0038	0.0016	0.0017	0.0000
A19	0.0003	0.0008	0.0004	0.0009	0.0074
A20	0.0022	0.0386	0.0230	0.0433	0.0007
A21	0.0005	0.0039	0.0014	0.0030	0.0001
A22	0.0005	0.0119	0.0051	0.0086	0.0249
A23	0.0002	0.0019	0.0014	0.0015	0.0097
A24	0.1717	0.0034	0.0007	0.0017	0.0004

		S	K	K	Ranking
	0-Optimal Value	0.3023	1.0000	1.0000	
TIGAR TIRES DOO PIROT	A1	0.0168	0.0555	0.0555	12
COCA-COLA HBC - SERBIA DOO	12	0.0245	0.1140	0.1140	5
ZEMUN	A2	0.0343	0.1140	0.1140	5
PHILIP MORRIS OPERATIONS AD NIŠ	A3	0.0218	0.0721	0.0721	10
HEMOFARM AD VRŠAC	A4	0.0104	0.0345	0.0345	15
FARMINA PET FOODS DOO INĐIJA	A5	0.0090	0.0297	0.0297	18
DELHAIZE SERBIA DOO BELGRADE	A6	0.0211	0.0697	0.0697	11
INVEJ AD BELGRADE-ZEMUN	A7	0.0278	0.0920	0.0920	8
JT INTERNATIONAL AD SENTA	A8	0.0116	0.0383	0.0383	14
KOEFIK DOO BELGRADE	A9	0.0226	0.0746	0.0746	9
JP ROADS OF SERBIA BELGRADE	A10	0.0470	0.1556	0.1556	4
IDC DOO BELGRADE	A11	0.0335	0.1108	0.1108	6
DOO RZD INTERNATIONAL BRANCH	A 12	0.0060	0.0107	0.0107	22
BELGRADE	AIZ	0.0000	0.0197	0.0197	22
DM INVEST DOO SMEDEREVSKA	A13	0.0051	0.0160	0.0160	23
PALANKA	AIS	0.0051	0.0109	0.0109	23
INKOP DOO ĆUPRIJA	A14	0.0037	0.0122	0.0122	24
TELENOR DOO BELGRADE	A15	0.0101	0.0333	0.0333	16
TELEKOM SRBIJA AD BELGRADE	A16	0.0322	0.1064	0.1064	7
VIP MOBILE DOO BELGRADE	A17	0.0065	0.0215	0.0215	21
SBB DOO BELGRADE	A18	0.0078	0.0257	0.0257	20
CETIN DOO BELGRADE	A19	0.0098	0.0325	0.0325	17
JP EPS BELGRADE	A20	0.1079	0.3567	0.3567	2
JKP BELGRADE ELEKTRANA	A 21	0.0089	0.0294	0.0294	10
BELGRADE	741	0.0009	0.0224	0.0224	17
JP SRBIJAGAS NOVI SAD	A22	0.0511	0.1690	0.1690	3
JUGOIMPORT-SDPR JP BELGRADE	A23	0.0148	0.0488	0.0488	13
JP POST OF SERBIA BELGRADE	A24	0.1779	0.5884	0.5884	1

Table 0: Ranking	q
------------------	---

Note: S_i is the value of the optimality function of the *i*-th alternative. The utility degree (K_i) of an alternative a_i .

According to the ARAS method, five most efficient companies in Serbia in 2020 are JP POST OF SERBIA BELGRADE, JP EPS BELGRADE, JP SERBIAGAS NOVI SAD, JP PUTEVI SERBIA BELGRADE and COCA-COLA HBC -SERBIA DOO ZEMUN. First four are public companies, and the fifth is from the processing industry sector. Public enterprises are The fundamentally efficient. retail chain DELHAIZE SERBIA DOO BELGRADE is in the eleventh place. The trading company JUGOIMPORT-SDPR JP BELGRADE is in thirteenth place. Trading companies are therefore well positioned.

In this paper, the impact of profit management, asset sales, capital, and human resources management on the financial performance and efficiency of companies in Serbia was analyzed using the given methodology. With their adequate control, the target profit can be achieved. The obtained results of the research on the treated problem in this paper show that the tested hypothesis has been confirmed.

In addition to these factors, primarily of an internal nature, the financial performance and efficiency of companies in Serbia are also influenced by others of an external nature. In the strictest sense of the word, factors of efficiency of enterprises in Serbia are the growth rate of gross domestic product, interest rate, inflation, employment rate, foreign direct investments, the efficiency of enterprise management, digitization of the entire enterprise operation, application of new business models, application of new concepts of cost, sales and profit management. Effective control of these factors can achieve the company's target profit.

Similar research does not exist in the literature, which makes international comparison difficult.

Research of the financial performance and efficiency of companies in Serbia was mainly carried out using ratio analysis. In order to obtain a more complete picture of the financial situation and efficiency of companies in Serbia, it is recommended to simultaneously use ratio analysis and multi-criteria decision-making methods. The ARAS method provides a more realistic representation of the efficiency of companies in Serbia compared to ratio analysis. For these reasons, it is recommended, especially in combination with other methods of multi-criteria differentiation (TOPSIS, WASPAS, MARCOS, and others), as well as with DEA models.

CONCLUSION

In Serbia, five the most efficient companies are JP POST OF SERBIA BELGRADE, JP EPS BELGRADE, JP SERBIAGAS NOVI SAD, JP PUTEVI SERBIA BELGRADE, and COCA-COLA HBC - SERBIA DOO ZEMUN. First four are public companies. The fifth company is from the processing industry. Basically, public benefits effective. The efficiency of business are management in Serbia was influenced by numerous macro and micro factors: growth rate of gross domestic product, interest rate, inflation, employment rate, foreign direct investments, the efficiency of enterprise management, application of new business models, application of new concepts of cost, sales and profit management, digitization of the entire enterprise operation, etc. The impact of the Covid-19 pandemic, which has been mitigated to some extent with electronic business, is also not significant. The target profit can be achieved by their adequate control.

In the future, in order to achieve the target efficiency of companies in Serbia, it is necessary to manage human resources, assets, capital, sales, and profit as efficiently as possible. For these purposes, among other things, new concepts of cost management should be increasingly applied (calculation of costs by basic activities, target costs, activity management, and others).

REFERENCES

- Banker, R. D., Charnes, A., & Cooper, W.W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. *Management Science*, *30*(9), 1078-1092. https://doi.org/10.1287/mnsc.30.9.1078
- Berman, B. R., Evans, J. R., & Chatterjee, P. M. (2018). *Retail Management: A Strategic Approach.* 13th Edition. Pearson.
- Ersoy, N. (2017). Performance measurement in retail industry by using a multi-criteria decision making methods. *Ege Academic Review*, *17*(4), 539–551. https://doi.org/10.21121/eab.2017431302
- Ersoy, N. (2022). Türk İnşaat Firmalarının Finansal Performansının SECA Yöntemi ile Değerlendirilmesi. *İzmir İktisat Dergisi, 37*(4), 1003-1021. https://doi.org/10.24988/ije.1065282
- Chatterjee, P., & Chakraborty, S. (2013). Gear material selection using complex proportional assessment and

additive ratio assessment-based approaches: a comparative study. *International Journal of Materials Science and Engineering, 1*(2), 104-111. https://doi.org/10.12720/ijmse.1.2.104-111.

- Dahooie, J. H., Zavadskas, E. K., Vanaki, A. S., Firoozfar, H.R., Lari, M. & Turskis, Z. (2019). A new evaluation model for corporate financial performance using integrated CCSD and FCM-ARAS approach. *Economic Research-Ekonomska Istraživanja*, 32(1), 1088-1113, https://doi.org/10.1080/1331677X.2019.1613250
- Gaur, L., Agarwal, V., & Anshu, K. (2020). Fuzzy DEMATEL Approach to Identify the Factors Influencing Efficiency of Indian Retail Websites. In: Kapur P., Singh O., Khatri S., Verma A. (eds) *Strategic System Assurance and Business Analytics*. Asset Analytics (Performance and Safety Management). Springer, Singapore. https://doi.org/10.1007/978-981-15-3647-2_6
- Jovčić, S., Simić, V., Průša, P., & Dobrodolac, M. (2020). Picture Fuzzy ARAS Method for Freight Distribution Concept Selection. *Symmetry*, 12(7), 1062. https://doi.org/10.3390/sym12071062
- Koc, N., & F.Uysal, (2017). Reverse logistics and application of ARAS method. *Journal of Management, Marketing and Logistics (JMML)*, 4(2), 178-185.
- https://doi.org/10.17261/Pressacademia.2017.462 Levy, M., Weitz, B., & Grewal, D. (2019). *Retailing*
- Management, 10th Edition. McGraw Hill.
- Lovreta, S., & Petković, G. (2021). *Trade management*. Faculty of Economics: Belgrade. Trgovinski menadžment. Ekonomsksi fakultet: Beograd (In: Serbia)
- Lukić, R. (2011). *Evaluation of business performance in retail*. Belgrade: Faculty of Economics. Evaluacija poslovnih performansi u maloprodaji. Beograd: Ekonomski fakultet (In: Serbia)
- Lukic, R., & Hadrovic Zekic, B. (2019). Evaluation of efficiency of trade companies in Serbia using the DEA approach. Proceedings of the 19th International Scientific Conference Business Logistic in Modern Management October 10-11, Osijek, Croatia, Josip Juraj Strossmaye, 145-162.
- Lukic, R, Hadrovic Zekic, B., & Crnjac Milic, D. (2020a). Financial performance evaluation of trading companies in Serbia using the integrated Fuzzy AHP
 TOPSIS Approach. 9th International Scientific Symposium region, Entrepreneurship, Development, Under the auspices of: Republic of Croatia Ministry of science and education, Osijek, Croatia, Josip Juraj Strossmaye, June, 690-703.
- Lukic, R., Vojteski Kljenak, D., & Anđelić, S. (2020b). Analyzing financial performances and efficiency of the retail food in Serbia by using the AHP-TOPSIS method. *Economics of Agriculture*, 67(1), 55-68.
- Lukic, R. (2020a). Analysis of the efficiency of trade in derivate in Serbia by applying the fuzzy AHP-TOPSIS method. *Business Excellence and Management*, 10(3), 80-98.

- Lukić, R. (2020b). Accounting of trading companies. Faculty of Economics: Belgrade. Računovodstvo trgovinskih preduzeća. Ekonomski fakultet: Beograd (In: Serbia)
- Lukic, R., Vojteski Kljenak, D., Anđelic, S., & Gavilovic, M. (2021). Application WASPAS method in the evaluation of efficiency of agricultural enterprises in Serbia. *Economics of Agriculture*, 68(2), 375-388. https://doi.org/10.5937/ekoPolj2102375L
- Lukic. R. (2021a). Analysis of the efficiency of insurance companies by lines of insurance in Serbia using the COCOSO method. *Insurance Trends*, 2, 24-38. https://doi.org/10.5937/TokOsig2102009L
- Lukic, R. (2021b). Application of MABAC Method in Evaluation of Sector Efficiency in Serbia. *Review of International Comparative Management*, 22(3), 400-417. https://doi.org/10.24818/RMCI.2021.3.400
- Lukic, R. (2021c). Application of the EDAS method in the evaluation of bank efficiency in Serbia. *Bankarstvo*, 50(2), 13-24. https://doi.org/10.5937/bankarstvo2102064L
- Lukic, R. (2021d). Application of ELECTRE method in performance analysis of food retailers in Serbia. *Business Excellence and Management, 1*(3), 84-102. https://doi.org/10.24818/beman/2021.11.3-05
- Lukic, R. (2021e). Application of ARAS method in assessing efficiency of insurance companies in Serbia. *Insurance Trends*, 3, 23-36. https://doi.org/10.5937/tokosig2103009F
- Lukic, R. (2021f). Analysis of the efficiency of trading companies in Serbia based on the SAW method. Есопотіс views. Анализа ефикасности трговинских предузећа у Србији на бази SAW методе (In Serbian). *Economic Outlook* -*Економски погледи, 23*(1), 1-16
- Lukic, R., & Hadrovic Zekic, B. (2021). Evaluation of transportation and storage in Serbia based on ratio analysis and the OCRA method. Proceedings of the 21th International Scientific Conference Business
- Logistic in Modern Management October 7-8, Osijek, Croatia, Josip Jurak Strossmayer University of Osijek, Faculty of Economics in Osijek, 189-200.
- Lukic, R., & Kozarevic, E. (2021). Application of ARAS method in assessment of trade efficiency in Serbia. December 2021, Conference: 7th Scientific Conference with International Participation "Economy of Integration" I C E I 2021 – Economic Response and Crisis Recovery Caused by the Covid-19 Pandemic, Tuzla, Bosnia and Herzegovina, 21-30.
- Lukić, R., & Hadrović Zekić, B. (2022). Efficiency analysis of trade companies in Serbia using the ARAS method. 22nd International scientific conference Business Logistics in Modern Management, Josip Juraj Strossmayer University of Osijek Faculty of Economics in Osijek, October 6-7, 2022, Osijek, Croatia, 105-119.
- Lukic, R. (2022). Analysis of efficiency factors of companies in Serbia based on artificial neural

networks. Анали Економског факултета у Суботици – The Annals of the Faculty of Economics in Subotica, 5(47), 097-115. https://doi.org/10.5937/AnEkSub2247097L

Nguyen, P.H., Tsai, J.F., Ngujen, V.T., Vu, D.D., & Dao, T.K. (2020). A Decision Support Model for Financial Performance Evaluation of Listed Companies in The Vietnamese Retailing Industry. *The Journal of Asian Finance, Economics and Business*, 7(12), 1005–1015.

https://doi.org/10.13106/jafeb.2020.vol7.no12.1005 Rostamzadeh, R. Esmaeili, A., Shahriyari Nia, A.,

Saparauskas, J., & Keshavarz Ghorabaee, M. (2017). A Fuzzy Aras Method for Supply Chain Management Performance Measurement in SMEs under Uncertainty. *Transformations in Business & Economics, 16*(2A (41A), 319-348.

- Saaty, T. L. (2008). Decision Making With The Analytic Hierarchy Process. *International Journal of Service Science*, 1(1), 83-98.
- Sliogeriene, J., Turskis, Z., & Streimikiene, D. (2013). Analysis and choice of energy generation technologies: The multiple criteria assessment on the case study of Lithuania. *Energy Procedia*, 32, 11-20. https://doi.org/10.1016/j.egypro.2013.05.003.
- Tsai, J.-F., Wang, C.-P., Chang, K.-L., & Hu, Y.-C. (2021). Selecting Bloggers for Hotels via an Innovative Mixed MCDM Model. *Mathematics*, 9, 1555. https://doi.org/10.3390/math9131555
- Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multi-criteria decision-making. *Technological and Economic Development of Economy*, 16(2), 159-172. https://doi.org/10.3846/tede.2010.10

EVALUACIJA FINANSIJSKIH PERFORMANSI I EFIKASNOSTI SRPSKIH PREDUZEĆA

Sve se više u svetu u novije vreme koriste različite metode višekriterijumskog odlučivanja, kao i DEA (Data Envelopment Analysis) modeli, za merenje finansijskih performanasi i efikasnosti preduzeća. Polazeći od toga, u ovom radu se analizira efikasnost preduzeća u Srbiji korišćenjem ARAS metode. Prema ARAS metodi pet najefikasnijih preduzeća u Srbiji su JP POŠTA SRBIJE BEOGRAD, JP EPS BEOGRAD, JP SRBIJAGAS NOVI SAD, JP PUTEVI SRBIJE BEOGRAD i COCA-COLA HBC - SRBIJA DOO ZEMUN. Prva četiri su javna preduzeća, a peto je iz sektora prerađivačke industrije. Javna preduzeća su u osnovi efikasna. Trgovinska preduzeća su dobro pozicionirana. Tako, na primer, maloprodajni lanac DELHAIZE SERBIA DOO BEOGRAD je na jedanaestom mestu. Na pozicioniranje preduzeća u Srbiji u pogledu efikasnosti utacali su, pored makroekonomskih faktora, i upravljačke veštine rukovodstva u pogledu što efikasnijeg upravljanja aktivom, kapitalom, prodajom, profitom i ljudskim resursama, koje su svakako različite od jednog do drugog preduzeća. Značajnu ulogu u tome imala je i digitalizacija celokupnog poslovanja. Takođe je zabeležen i uticaj pandemije korona virusa Covid-19.

Ključne reči: ARAS metoda; Efikasnost; Faktori; Preduzeća; Srbija.